Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Front Aging Neurosci ; 16: 1364727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560024

RESUMO

Background: Rapid eye movement sleep behavior disorder (RBD) is common in individuals with Parkinson's disease (PD). In spite of that, the precise mechanism underlying the pathophysiology of RBD among PD remains unclear. Objective: The aim of the present study was to analyze gray matter volumes (GMVs) as well as the changes of functional connectivity (FC) among PD patients with RBD (PD-RBD) by employing a combination of voxel-based morphometry (VBM) and FC methods. Methods: A total of 65 PD patients and 21 healthy control (HC) subjects were included in this study. VBM analyses were performed on all subjects. Subsequently, regions with significant different GMVs between PD patients with and without RBD (PD-nRBD) were selected for further analysis of FC. Correlations between altered GMVs and FC values with RBD scores were also investigated. Additionally, receiver operating characteristic (ROC) curves were employed for the evaluation of the predictive value of GMVs and FC in identifying RBD in PD. Results: PD-RBD patients exhibited lower GMVs in the left middle temporal gyrus (MTG) and bilateral cuneus. Furthermore, we observed higher FC between the left MTG and the right postcentral gyrus (PoCG), as well as lower FC between the bilateral cuneus (CUN) and the right middle frontal gyrus (MFG) among PD-RBD patients in contrast with PD-nRBD patients. Moreover, the GMVs of MTG (extending to the right PoCG) was positively correlated with RBD severity [as measured by REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ) score]. Conversely, the FC value between the bilateral CUN and the right MTG in PD-RBD patients was negatively correlated with RBDSQ score. Conclusion: This study revealed the presence replace with GMV and FC changes among PD-RBD patients, which were closely linked to the severity of RBD symptoms. Furthermore, the combination of basic clinical characteristics, GMVs and FC values effectively predicted RBD for individuals with PD.

2.
J Biomater Sci Polym Ed ; : 1-16, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590076

RESUMO

Microneedles offer minimally invasive, user-friendly, and subcutaneously accessible transdermal drug delivery and have been widely investigated as an effective transdermal delivery system. Ibuprofen is a common anti-inflammatory drug to treat chronic inflammation. It is crucial to develop microneedle patches capable of efficiently delivering ibuprofen through the skin for the effective treatment of arthritis patients requiring repeated medication. In this study, the mechanical properties of a new type of polymer microneedle were studied by finite element analysis, and the experimental results showed that the microneedle could effectively deliver drugs through the skin. In addition, a high ibuprofen-loaded microneedle patch was successfully prepared by micromolding and subjected to evaluation of its infrared spectrum morphology and dissolve degree. The morphology of microneedles was characterized by scanning electron microscopy, and the mechanical properties were assessed using a built linear stretching system. In the in-vitro diffusion cell drug release test, the microneedle released 85.2 ± 1.52% (210 ± 3.7 µg) ibuprofen in the modified Franz diffusion within 4 h, exhibiting a higher drug release compared to other drug delivery methods. This study provides a portable, safe and efficient treatment approach for arthritis patients requiring daily repeated medication.

3.
Crit Rev Anal Chem ; : 1-37, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635407

RESUMO

Glucose concentration is a crucial parameter for assessing human health. Over recent years, non-enzymatic electrochemical glucose sensors have drawn considerable attention due to their substantial progress. This review explores the common mechanism behind the transition metal-based electrocatalytic oxidation of glucose molecules through classical electrocatalytic frameworks like the Pletcher model and the Hydrous Oxide-Adatom Mediator model (IHOAM), as well as the redox reactions at the transition metal centers. It further compiles the electrochemical characterization techniques, associated formulas, and their ensuing conclusions pertinent to transition metal-based non-enzymatic electrochemical glucose sensors. Subsequently, the review covers the latest advancements in the field of transition metal-based active materials and support materials used in non-enzymatic electrochemical glucose sensors in the last decade (2014-2023). Additionally, it presents a comprehensive classification of representative studies according to the active metal catalysts components involved.

4.
J Imaging ; 10(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535133

RESUMO

In this paper, a Segment Anything Model (SAM)-based pedestrian infrastructure segmentation workflow is designed and optimized, which is capable of efficiently processing multi-sourced geospatial data, including LiDAR data and satellite imagery data. We used an expanded definition of pedestrian infrastructure inventory, which goes beyond the traditional transportation elements to include street furniture objects that are important for accessibility but are often omitted from the traditional definition. Our contributions lie in producing the necessary knowledge to answer the following three questions. First, how can mobile LiDAR technology be leveraged to produce comprehensive pedestrian-accessible infrastructure inventory? Second, which data representation can facilitate zero-shot segmentation of infrastructure objects with SAM? Third, how well does the SAM-based method perform on segmenting pedestrian infrastructure objects? Our proposed method is designed to efficiently create pedestrian-accessible infrastructure inventory through the zero-shot segmentation of multi-sourced geospatial datasets. Through addressing three research questions, we show how the multi-mode data should be prepared, what data representation works best for what asset features, and how SAM performs on these data presentations. Our findings indicate that street-view images generated from mobile LiDAR point-cloud data, when paired with satellite imagery data, can work efficiently with SAM to create a scalable pedestrian infrastructure inventory approach with immediate benefits to GIS professionals, city managers, transportation owners, and walkers, especially those with travel-limiting disabilities, such as individuals who are blind, have low vision, or experience mobility disabilities.

5.
Analyst ; 149(7): 2016-2022, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38451140

RESUMO

MXenes with excellent conductivity and abundant surface functional groups have displayed great advantages as platforms for sensing materials. NiO also has drawn much attention for gas detection due to its unique merits of excellent catalytic activity. Herein, NiO nanoparticles are incorporated with multilayer Ti3C2Tx-MXene to develop excellent triethylamine sensors. Due to the larger specific surface area and formed p-p heterojunctions, the response of the NiO/Ti3C2Tx gas sensor is endowed with a response value of 950% to 50 ppm triethylamine gas and is much higher than that of the pristine NiO sensor. Moreover, the NiO/Ti3C2Tx sensor displays a fast response time of 8 s (50 ppm triethylamine), excellent reproducibility, and reliable long-term stability. This study proves that NiO/Ti3C2Tx sensors have potential for the effective detection of triethylamine gas.

6.
Talanta ; 273: 125865, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452593

RESUMO

Sweat has excellent potential as one of the sources of non-invasive biomarkers for clinical diagnosis. It is relatively easy to collect and process and may contain different disease-specific markers and drug metabolites, making it ideal for various clinical applications. This article discusses the anatomy of sweat glands and their role in sweat production, as well as the history and development of multiple sweat sample collection and analysis techniques. Another primary focus of this article is the application of sweat detection in clinical disease diagnosis and other life scenarios. Finally, the limitations and prospects of sweat analysis are discussed.


Assuntos
Técnicas Biossensoriais , Suor , Suor/química , Biomarcadores/análise , Técnicas Biossensoriais/métodos
7.
ACS Sens ; 9(3): 1447-1457, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412069

RESUMO

Developing high-performance chemiresistive gas sensors with mechanical compliance for environmental or health-related biomarker monitoring has recently drawn increasing research attention. Among them, two-dimensional MXene materials hold great potential for room-temperature hazardous gas (e.g., NH3) monitoring regardless of the complicated fabrication process, insufficient 2D/3D flexibilities, and poor environmental sustainability. Herein, a Ti3C2Tx MXene/gelatin ink was developed for patterning electrodes through a facile spray coating. Particularly, the patterned Ti3C2Tx-based coating exhibited good adhesion on the paper substrate against repeated peeling-off and excellent mechanical flexibility against 1000 cyclic stretching. The porous morphology of the coating facilitated the NH3 sensing ability. As a result, the 2D kirigami-shaped NH3 sensor exhibited a good response of 7% to 50 ppm of NH3 with detectable concentrations ranging from 5-500 ppm, decent selectivity over interferences, etc., which could be well-maintained even at 50% stretched state. In addition, with the help of mechanically guided compressive buckling, 3D mesostructured MXene origamis could be obtained, holding promise for detecting the coming direction and height distribution of hazardous gas, e.g., the NH3. More importantly, the as-fabricated MXene/gelatin origami paper could be fully degraded in PBS/H2O2/cellulase solution within 19 days, demonstrating its potential as a high-performance, shape morphable, and environmentally friendly wearable gas sensor.


Assuntos
Amônia , Celulase , Nitritos , Elementos de Transição , Gelatina , Peróxido de Hidrogênio
8.
Adv Healthc Mater ; : e2303921, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341619

RESUMO

Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.

9.
Nanotechnology ; 35(21)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377618

RESUMO

MXene, a class of two-dimensional materials that are emerging as rising stars in the field of materials, are receiving much attention in sensing. Ti3C2TxMXene, the most maturely researched MXene, is widely used in energy, biomedical, laser, and microwave shielding applications and has also been expanded to gas sensing and wearable electronics applications. Compared with Ti3C2Tx, Nb2CTxMXene is more difficult to etch and has higher resistances at room temperature; so, few studies have been reported on their use in the sensing field. Based on the preparation of few-layer Nb2CTxMXene by intercalation, this study thoroughly examined their gas-sensing properties. The successfully prepared few-layer Nb2CTxshowed good selectivity and high sensitivity to triethylamine at room temperature, with response values up to 47.2% for 50 ppm triethylamine and short response/recovery time (22/20 s). This study opens an important path for the design of novel Nb-based MXene sensors for triethylamine gas detection.

10.
Front Microbiol ; 15: 1324313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371932

RESUMO

Water level fluctuations (WLFs) are typical characteristic of floodplain lakes and dominant forces regulating the structure and function of lacustrine ecosystems. The sediment diazotrophs play important roles in contributing bioavailable nitrogen to the aquatic environment. However, the relationship between the diazotrophic community and WLFs in floodplain lakes is unknown. In this paper, we carried out a comprehensive investigation on the alpha diversity, abundance, composition and co-occurrence network of the sediment diazotrophs during different water level phases in Poyang Lake. There were no regular variation patterns in the alpha diversity and abundance of the sediment diazotrophs with the water level phase transitions. The relative abundance of some diazotrophic phyla (including Alphaproteobacteria, Deltaproteobacteri, Euryarchaeota, and Firmicutes) and genera (including Geobacter, Deferrisoma, Desulfuromonas, Rivicola, Paraburkholderia, Methylophilus, Methanothrix, Methanobacterium, and Clostridium) was found to change with the water level phase transitions. The results of ANOSIM, PerMANOVA, and DCA at the OTU level showed that the diazotrophic community structure in the low water level phase was significantly different from that in the two high water level phases, while there was no significant difference between the two high water level phases. These results indicated that the diazotrophic community was affected by the declining water level in terms of the composition, while the rising water level contributed to the recoveries of the diazotrophic community. The diazotrophs co-occurrence network was disrupted by the declining water level, but it was strengthened by the rising water level. Moreover, redundancy analysis showed that the variation of the diazotrophic community composition was mostly related to sediment total nitrogen (TN) and total phosphorous (TP). Interestingly, the levels of sediment TN and TP were also found to vary with the water level phase transitions. Therefore, it might be speculated that the WLFs may influence the sediment TN and TP, and in turn influence the diazotrophic community composition. These data can contribute to broadening our understanding of the ecological impacts of WLFs and the nitrogen fixation process in floodplain lakes.

11.
Ren Fail ; 46(1): 2316269, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38362707

RESUMO

BACKGROUND: Arteriovenous fistula (AVF) is currently the preferred vascular access for hemodialysis patients. However, the low maturation rate of AVF severely affects its use in patients. A more comprehensive understanding and study of the mechanisms of AVF maturation is urgently needed. METHODS AND RESULTS: In this study, we downloaded the publicly available datasets (GSE119296 and GSE220796) from the Gene Expression Omnibus (GEO) and merged them for subsequent analysis. We screened 84 differentially expressed genes (DEGs) and performed the functional enrichment analysis. Next, we integrated the results obtained from the degree algorithm provided by the Cytohubba plug-in, Molecular complex detection (MCODE) plug-in, weighted gene correlation network analysis (WGCNA), and Least absolute shrinkage and selection operator (LASSO) logistic regression. This integration allowed us to identify CTSG as a hub gene associated with AVF maturation. Through the literature search and Pearson's correlation analysis, the genes matrix metalloproteinase 2 (MMP2) and MMP9 were identified as potential downstream effectors of CTSG. We then collected three immature clinical AVF vein samples and three mature samples and validated the expression of CTSG using immunohistochemistry (IHC) and double-immunofluorescence staining. The IHC results demonstrated a significant decrease in CTSG expression levels in the immature AVF vein samples compared to the mature samples. The results of double-immunofluorescence staining revealed that CTSG was expressed in both the intima and media of AVF veins. Moreover, the expression of CTSG in vascular smooth muscle cells (VSMCs) was significantly higher in the mature samples compared to the immature samples. The results of Masson's trichrome and collagen I IHC staining demonstrated a higher extent of collagen deposition in the media of immature AVF veins compared to the mature. By constructing an in vitro CTSG overexpression model in VSMCs, we found that CTSG upregulated the expression of MMP2 and MMP9 while downregulating the expression of collagen I and collagen III. Furthermore, CTSG was found to inhibit VSMC migration. CONCLUSIONS: CTSG may promote AVF maturation by stimulating the secretion of MMP2 and MMP9 from VSMCs and reducing the extent of medial fibrosis in AVF veins by inhibiting the secretion of collagen I and collagen III.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Humanos , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Catepsina G , Diálise Renal/métodos , Colágeno , Colágeno Tipo I , Fístula Arteriovenosa/etiologia
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 274-281, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387934

RESUMO

OBJECTIVE: To construct recombinant lentivirus and adenovirus which regulate the expression of c-Cbl gene and evaluate their efficacy. METHODS: The interference lentivirus and overexpressed adenovirus targeting human c-Cbl gene were constructed by gene recombination technology. Quantitative PCR and western blotting were used to detect the expression changes in c-Cbl gene and its transcription after leukemia cells (HL60,THP1) were infected by virus. RESULTS: Three recombinant interfering lentiviral vectors targeting human c-Cbl genes to successfully constructed and were identified by DNA sequencing, and the titers of the packaged viruses were all greater than 1×108 TU/ml. Among them, shRNA-2 lentivirus had the highest interference efficiency, and the expression of c-Cbl gene and CBL protein were decreased about 95% and 60% respectively after leukemia cells were infected with shRNA-2; In addition, the recombinant overexpression adenovirus targeting human c-Cbl gene was packaged successfully with the virus titer greater than 1×109 TU/ml. When leukemia cells were infected with adenovirus, the expression of c-Cbl gene and CBL protein were up-regulated about 10 times and 1.5 times respectively. CONCLUSION: Both recombinant interfering lentivirus and overexpression adenovirus can efficiently infect leukemia cells and affect the expressions of c-Cbl gene and CBL protein. It will lay a preliminary foundation for the subsequent study on the function of c-Cbl gene in tumor cells.


Assuntos
Vetores Genéticos , Leucemia , Humanos , Adenoviridae/genética , Lentivirus/genética , RNA Interferente Pequeno/genética
13.
Nanotechnology ; 35(19)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38295405

RESUMO

The bimetallic metal-organic frameworks (MOFs), Cu/Co-MOF, was synthesized through a solvothermal method and calcined to obtain CuO/Co3O4composites. By adjusting the molar ratio between Cu and Co ions, a composite material of CuO/Co3O4(Cu:Co = 1:1) was developed and showed excellent sensing capabilities, and the response reached as high as 196.3 for 10 ppm H2S detection. Furthermore, the optimal operating temperature as low as 40 °C was found. In comparison with the sensors prepared by pristine CuO and pristine Co3O4, the sensor based on CuO/Co3O4composite exhibited a significant response. Additionally, the sensor can detect H2S gas down to 300 ppb. The gas sensing mechanism is discussed in depth from the perspective of p-p heterojunction formation between the p-type CuO and p-type Co3O4. The as-prepared CuO/Co3O4composite-based sensor is expected to find practical application in the low-power monitoring of H2S.

14.
Biomater Sci ; 12(3): 530-563, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37971423

RESUMO

Wearable devices have become prevalent in biomedical studies due to their convenient portability and potential utility in biomarker monitoring for healthcare. Accessing interstitial fluid (ISF) across the skin barrier, microneedle (MN) is a promising minimally invasive wearable technology for transdermal sensing and drug delivery. MN has the potential to overcome the limitations of conventional transdermal drug administration, making it another prospective mode of drug delivery after oral and injectable. Subsequently, combining MN with multiple sensing approaches has led to its extensive application to detect biomarkers in ISF. In this context, employing MN platforms and control schemes to merge diagnostic and therapeutic capabilities into theranostic systems will facilitate on-demand therapy and point-of-care diagnostics, paving the way for future MN technologies. A comprehensive analysis of the growing advances of microneedles in biomedical systems is presented in this review to summarize the latest studies for academics in the field and to offer for reference the issues that need to be addressed in MN application for healthcare. Covering an array of novel studies, we discuss the following main topics: classification of microneedles in the biomedical field, considerations of MN design, current applications of microneedles in diagnosis and therapy, and the regulatory landscape and prospects of microneedles for biomedical applications. This review sheds light on the significance of microneedle-based innovations, presenting an analysis of their potential implications and contributions to the community of wearable healthcare technologies. The review provides a comprehensive understanding of the field's current state and potential, making it a valuable resource for academics and clinicians seeking to harness the full potential of MN applications.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Estudos Prospectivos , Microinjeções , Administração Cutânea , Biomarcadores
15.
Ann Hematol ; 103(3): 855-868, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112795

RESUMO

This multicenter, open-label, single-arm trial (ClinicalTrials.gov, NCT05236621) was conducted to confirm the efficacy and safety of generic pomalidomide plus dexamethasone in Chinese patients with relapsed or refractory multiple myeloma (RRMM). Total 79 eligible RRMM patients were planned to be included. Patients were treated with generic pomalidomide (4 mg daily on days 1-21, orally) and low-dose dexamethasone (40 mg/day on days 1, 8, 15, and 22, orally; 20 mg for patients aged > 75 years) in 28-day cycles until disease progression with a maximum treatment duration of 2 years. The primary endpoint is the overall response rate (ORR) assessed by the independent review committee per the 2016 International Myeloma Working Group guidelines. A total of 85 eligible patients were included in this study from 32 centers in China, with a median age of 62.0 (range, 39-76) years, a median prior line of therapy of 4 (range, 1-16), and 41.2% patients with high-risk cytogenetics. The ORR was 38.8% (95% confidence interval (CI), 28.44-50.01). The disease control rate was 67.1% (95% CI, 56.02-76.87), meanwhile, the median progression-free survival was 5.55 months (95% CI, 3.68-7.52). Among the treatment-related adverse events (TRAEs), infective pneumonia (17.6%) was the most frequent non-hematologic adverse event, while a decrease in neutrophil count (52.9%) was the most common grade ≥ 3 TRAE. The study results indicated that the generic pomalidomide demonstrated consistent efficacy and a safety profile similar to the branded pomalidomide when combined with low-dose dexamethasone in Chinese RRMM patients.Registration number ClinicalTrials.gov NCT05236621, retrospectively registered on February 11, 2022.


Assuntos
Mieloma Múltiplo , Talidomida/análogos & derivados , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Mieloma Múltiplo/tratamento farmacológico , Dexametasona , Recidiva Local de Neoplasia/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
16.
Clin Transl Med ; 13(12): e1509, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38082439

RESUMO

BACKGROUND: Abelson tyrosine kinase (c-Abl) is frequently mutated and highly expressed, and promotes non-small-cell lung cancer (NSCLC) survival, metastasis and tumorigenesis. c-Abl could also be modified through ubiquitination, but the underlying mechanism is not well understood. METHODS: Mass spectrometry assays were performed to search c-Abl deubiquitination enzymes. The molecular mechanism was determined using Co-IP assays, pull-down assays, Western blotting upon gene knockdown or overexpression. Cell lines and animal models were used to investigate the role of c-Abl and USP7 in NSCLC. EdU staining assay and Transwell assay were performed to evaluate the proliferation and migration ability of NSCLC cells, respectively. RESULTS: Ubiquitin-specific protease 7 (USP7) is found to upregulate c-Abl via the deubiquitinase screen. USP7 interacts with c-Abl and decreases its K48-linked polyubiquitination, thereby increasing the stability of c-Abl. In addition to the wild-type one, c-Abl mutants can also be deubiquitinated and stabilized by USP7. Moreover, USP7 promotes c-Abl accumulation in cytoplasm by increasing its binding to 14-3-3α/ß and activates the oncogenic c-Abl signalling pathway. Furthermore, the USP7/c-Abl axis promotes NSCLC cell glycolysis by direct phosphorylating and stabilizing hexokinase-2 (HK2). Knockdown of USP7 or c-Abl suppresses NSCLC cell glycolysis and reduces lactate production. Further studies revealed that overexpression of USP7 facilitates NSCLC cell growth and metastasis as well as xenograft growth in nude mice, while these activities are suppressed with USP7 or c-Abl being knocked down. CONCLUSIONS: USP7 is a deubiquitinase of c-Abl and upregulates its oncogenic activity. USP7 promotes NSCLC cell metabolism by activating c-Abl and HK2. Targeting the USP7/c-Abl/HK2 axis might be a potential strategy to the precision therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Camundongos Nus , Glicólise/genética
17.
Cell Death Discov ; 9(1): 405, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907575

RESUMO

Rituximab has been incorporated into the standard treatment regimen for diffuse large B-cell lymphoma (DLBCL), and induces the death of tumor cells via complement-dependent cytotoxicity (CDC). Unfortunately, the resistance of DLBCL cells to Rituximab limits its clinical usefulness. It remains unclear whether the complement system is related to Rituximab resistance in DLBCL. A Rituximab-resistant DLBCL cell line (Farage/R) was generated under the stress of Rituximab. Constituent proteins of the complement system in wild-type Farage cells (Farage/S) and Farage/R cells were analyzed by qPCR, western blotting, and immunofluorescence. In vitro and in vivo knockdown and overexpression studies confirmed that the complement 1Q subcomponent A chain (C1qA) was a regulator of Rituximab resistance. Finally, the mechanism by which C1qA is regulated by m6A methylation was explored. The reader and writer were identified by pull-down studies and RIP-qPCR. Activity of the complement system in Farage/R cells was suppressed. C1qA expression was reduced in Farage/R cells due to post-transcriptional regulation. Furthermore, in vitro and in vivo results showed that C1qA knockdown in Farage/S cells decreased their sensitivity to Rituximab, and C1qA overexpression in Farage/R cells attenuated the Rituximab resistance of those cells. Moreover, METTL3 and YTHDF2 were proven to be the reader and writer for m6A methylation of C1qA, respectively. Knockdown of METTL3 or YTHDF2 in Farage/R cells up-regulated C1qA expression and reduced their resistance to Rituximab. In summary, the aberrant downregulation of C1qA was related to Rituximab resistance in DLBCL cells, and C1qA was found to be regulated by METTL3- and YTHDF2-mediated m6A methylation. Enhancing the response of the complement system via regulation of C1qA might be an effective strategy for inhibiting Rituximab resistance in DLBCL.

18.
Int J Biol Sci ; 19(9): 2803-2816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324936

RESUMO

The transcription factor PBX1 is regarded as an oncogene in various cancers, but its role in non-small cell lung cancer (NSCLC) and the detailed mechanism is not known. In the present study, we found that PBX1 is downregulated in NSCLC tissues and inhibits NSCLC cell proliferation and migration. Subsequently, we performed an affinity purification-coupled tandem mass spectrometry (MS/MS) and found the ubiquitin ligase TRIM26 in the PBX1 immunoprecipitates. Moreover, TRIM26 binds to and mediates PBX1 for K48-linked polyubiquitination and proteasomal degradation. Noticeably, TRIM26 activity depends on its C-terminal RING domain when it is deleted TRIM26 loses its function towards PBX1. TRIM26 further inhibits PBX1 transcriptional activity and downregulates the PBX1 downstream genes, such as RNF6. Moreover, we found that overexpression of TRIM26 significantly promotes NSCLC proliferation, colony formation, and migration in contradiction to PBX1. TRIM26 is highly expressed in NSCLC tissues and predicts poor prognosis. Lastly, the growth NSCLC xenografts is promoted by overexpression of TRIM26 but is suppressed by TRIM26 knockout. In conclusion, TRIM26 is a ubiquitin ligase of PBX1 and it promotes while PBX1 inhibits NSCLC tumor growth. TRIM26 might be a novel therapeutic target for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Espectrometria de Massas em Tandem , Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
19.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194955, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331650

RESUMO

Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.


Assuntos
Inflamassomos , Piroptose , Inflamassomos/metabolismo , Ubiquitinação , Citocinas
20.
J Mater Chem B ; 11(26): 6075-6081, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37254923

RESUMO

The development of a straightforward, economical, portable, and highly sensitive sensing platform for the rapid detection of cholesterol is desirable for the early diagnosis of several pathologic conditions. In this work, we present a fascinating skin-worn microneedle sensor for monitoring cholesterol in interstitial fluid samples. The microneedle sensor was developed by incorporating platinum (Pt) and silver (Ag) wires within pyramidal microneedles containing a microcavity opening; cholesterol oxidase (ChOx) was coupled on the Pt transducer surface using bovine serum albumin and Nafion. Under optimal conditions, the enzymatic microneedle sensor exhibited high sensitivity (0.201 µA µM-1) towards cholesterol in buffer solution, with good linearity over the 1-20 µM range and a correlation coefficient of 0.9910. The analytical performance of the microneedle sensor was also investigated in artificial interstitial fluid and a skin-mimicking phantom gel; the sensor showed great potential for skin-worn/wearable applications with excellent linearity and a low detection limit. In addition, the developed microneedle sensor showed satisfactory stability and good selectivity towards cholesterol in the presence of potential interfering biomolecules, including glucose, lactic acid, uric acid, and ascorbic acid. This sensor exhibits enormous promise for straightforward, sensitive, and minimally invasive monitoring of cholesterol.


Assuntos
Técnicas Biossensoriais , Humanos , Agulhas , Glucose/análise , Pele , Líquido Extracelular/química , Platina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...